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THE THEORETICAL LIFT OF FLAT SWEPT-BACK
WINGS AT SUPERSONIC SPEEDS
By Doris Cohen
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The following list of changes, which includes the changes listed in
all previously issued errata, should be noted:

Pege 3, line 5, Read O 1Instead of A,

Page 7, equation (6). The expression in the parentheses, last line,
should read: v

(=

m-8y

Page 8, equation (8). The expression in brackets, last line, should
read: ‘

{ my W 1-aZ ~ (mt—at)}

Page 13. The definition of { should read:

¢ = _2Be

1+p2e2

Page 14, line preceding equation (19)., Correct expression for =xg
to read:

_ B8
*a =g

Page 17, line preceding equation (28). Read "wing" for "tip."

Page 18, equations (31) and (32). The right—hand sides should be

multiplied by 2 (i.e., the number 2 appearing in the coefficients should
be 4).
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Page 20, equation (36). Insert § in the denominator of the
coefficient of the right~hand member. ’

Page 20, bottom of page. The line preceding the series for K(k!)
should read ", . . when k 1is small."

( 'P;;ge 23, equations (46) and (47). Multiply right~hand members
by (-1).

Page 24, equation for H'(m). Change to read:

1 n-e
_mey | By WAy { - (1<+_-) [at+___s]}
a”m*(lem) | m  2ay(l+m) 2me 6(14m)
Page 26, equation (51). Replace by

u = r.p. ug L@z H1-mE2) N 1-m2

K( 1-m; 2)
where K and F are the complete and incomplete elliptic integrals of
the first kind, of modulus :[/! l—-m.t§ » and '
et
9 = simrl 1-to
l-m 2

(This solution is due to H. S. Ribner, of the NACA.)

Page 27, equation (55). The expression in brackets should read:

n/2
2 - )
K( of1-m;2)
Page 28, lines 2, 3, kL, a.nd"j. The series expasnsion of 1 — -2- E 1is

no longer pertinent, Substitute the following for lines 2, 3, l& and 51

The following series expansion (from reference 9) is useful:

__T4=.ﬂ2 - xR 14+ 1332 12 3% 5% gt >
K(W1-me2)  2K( :71—-1%2) [ 2(1*'1“1-,) 42 62 ¥

vwhere R = }-—-n—lt
1+mt
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Page 28, equation (57). Change to read:

AL — mE(mya)® [oogmt Domify lm_]
Q@ a.2(m 2-m2)E( Vim2) [«/mtz-ma '[COB n(m—e) 0% mg

(m2-mia) /mPag2 [1- Eﬂ’:&ﬂ.]_

mi-ay,

/My (1-m) (my +m) { [(m+at)2 o T (m—a t)z 1 ] [ F(Q4,k) -

my+m

F(,k)] - mtzimé [(me-miai)?+3u2(mi—ay )2 ] [E(q’t:/k)-E(@o:k")} J

Page 29, equation (58). Close brace at end of equation.

Page 30. The expression for the induced moment AM should read:

.i‘ﬂ.@ﬂn_.f mt—at __.._.> W 1 ___. dt
X( r-_—l-—mtz) agm; 3tg F(0, # 1-my 2) o

and

%mﬁ%ﬁ{wf [1‘1« {;Jﬂl ) 1_%2)]}“”

Page 34, line 21. Amend to read "(Au), replaced by the right~hand
member of equation (51)" and delete the expression which follows.

Page 38, following equation (T4). Read "equation (38)" for
"equation (30)."
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Page 40, equation (77). The expression in brackets should read:

[ 2]

Page 46. The table should read as follows:

Aspect on/oT2

Wing ratio Ly COp/CL

Tapered wing 3.85 3.09 0.160

Untapered wing 1.73 1.97 .326
Modified untapered

wing 2.45 2.62 .236

Page 49, In e, read p222 for pz2

a, -
In g(a), read " for &

In Q, read (1-m;) for (14my)

Page 52, equation (A6), Insert a,2 in denominator of the coeffi—
cient of the right—hand member.

Figures

The changes arising from the correction of equation (51) have only
a small effect on the calculated results presented. (There is a major
change in the downwash, which was not evaluated in this report.) The
general shape of the pressure distribution remains the same. The
magnitude of the correction is indicated in the figure below, in which
the correct Au/u, and the curve given by the original equation (51)

10
-4y
[
L cos— L1+ mE)EE=2mf
4 (1—mf)1E
=0 —m, 0 m, 70

Y
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are compared for m¢=0.57. This figure corrects figure 13, and may be
used to find the percent error in component 1 of the pressure distribu—

tions in figure 17. Component 5 in figure 17(d) will likewisge be
increased.

Tables I and II

Table I. The component of L calculated for the untapered wing
from equation (55) should be changed from —15.90 to —18.28, and from
equation (73), from +0.1k to +0.16., The total éﬁ is therefore 11k4,28
and Cr,=1.97, or 0.034k per degree.

M

Table II. The values of G contributed by the symmetrical wake

solution, as corrected, are as follows: 19.9, 207.3, and 41.3. The
amended totals are —457.4, -728.2, and —660.5, and the ratios of moment
arms are 1.08, 0.82, and 1.01.

NACA-Langley - 8-8-49 - 1000
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TECHNICAL NOTE NO. 1555

THE THEORETICAL LIFT OF FLAT SWEPT-BACK
WINGS AT SUPERSONIC SPEEDS

By Doris Cohen

SUMMARY

The method of superposition of linearized conicael flows has
been applied to the calculation of the asrodynamic properties of
thin, flat, swept-back wings at an angle of attack.,

Various cases are distinguished, depending on the sweep of the
leading and tralling edges relative to their respective Mach lines.
Where the Mach line from the apex of the wing lies behind the
leading edge but intersects the tip, formulas for the total 1ift
are given in closed form. The induced drag is simply the 1ift times
the angle of attack. To obtain the pitching moment the numerical
integration of elementary functions 1s required. Where the léading
edge, but not the trailing edge, is swept behind the Mach lines,
the pregsure distribution and the total 11ft are both given in
closed form, but not the pitching moment. The induced drag is
calculated by a simple formula from the 1ift,

, The highly swept wing with both leading and trailing edges
behind their respective Mach lines cannot be completely solved by
the present method except by a serles of successive approximations.
However, the pressure distribution can be determined over all but
the generally small region in which the tip and trailing-edge Mach
cones overlap, and the total 1ift, pitching moment and induced drag
can be approximated with practical accuracy, provided the aspect
ratio 1s not go high nor the Mach number so low that the Mach lines
from the trailing edge intersect the leading edge. (The latter case
is not treated in the present paper.)

The complete procedure for the highly swept wing is outlined
and various degrees of approximation suggested. Application of
the general method to other plen forms is also discussed.

The investigation has produced an interesting result regsrding
the 1ift near the tip of a highly ewept wing. The formulas show
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an abrupt drop in lifting pressure across the tip Mach lines, the
residual 1ift over most of the enclosed area being almost negli-
gible. The attendant change in center-of-pressure location with
Mach number may present a serious stability problem.

As a result of this development, a wing with tips normal to the
gtream is also investigated. This case 1s relatively simple to
calculate and the necessary formulas are given in closed form.
Calculations are presented for such a wing, as well as for two
conventional swept-back wings with 63° sweep of the leadling edge,
at a Mach number of l.5.

INTRODUCTION

Although a number of treatments of the problem of the 1ift on
a thin flat surface in supersonic flow have recently been published
(see bibliography of reference 1, and references 2 and 3) the 1lift
distribution over a wing with both leading and trailing edges swept
behind their respective Mach lines has not, at the present writing,
been determined. The only explicitly formulated solutions (all
based on the linsarized form of the flow equations) are essentially
of the so-called "conical” type, introduced by Busemann (reference 4);
that is, solutions in which such quantitles as the velocities and
pressure are constant along lines radiating from a single point.
The limitation is therefore automatically imposed that the boundary
conditions to be satisfied must also be constant along such lines. '
Under certain circumstances, conical fields may be superposed to
give surfaces of nonconical plan form. Figure 1l(a) shows one such
case, a finlte-—span trapezoidal wing swept only slightly compared
to the Mach lines. The basic solution here is that for a flat,
symmetrical unyawed triangle at an angle of attack, and is conical
with respect to the apex 0. The triangle may extend to infinity.
The pressure distribution over the shaded portion is constant; the
values vary between the Mach lines from O, but are constant along
any ray drawn through O. In order to obtain a finite wing, it
is necessary to cancel the pressure beyond the tips AB and A'B! by
superposing negatively loaded triangular surfaces with apexes at
A and A' and one edge parallel to the stream. The conditions to be
satisfied by the supplementary solutions are that (L) the pressure
be constant over the subtracted surfaces in order to. cancel the
constant pressure in the basic solution, and (2) the downwash induced
inboard of the streamwise edge be zero in order that the surface may
remain flat. Both of these conditions are conical with respect to
A or A', so that a conical solution may be used. The area behind

lThe source—distribution methods of references 2 and 3, however, are
applicable to curvilinear plan forms within certaln restrictions.
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BCB! may, of course, be subtracted without affecting the wing itself
in any way, since the wing lies entirely shead of the Mach lines
originating from any point on the surface BCB'. Conslder, however,
the case shown in figure 1(b). Here the Mach number 1s such that
the Mach lines from A intersect the tips of the wing. Starting
with the same basic triangle, we find that the area to be removed
outboard of A includes, in this case, a reglon over which the
pressure varies, and 18 conical with respect to 0. Since the
boundaries of the reglion are, however, conical with respect to A,

no one conical solution can satisfy the conditions. This case and

the preceding one can be treated by the point-source method of
reference 2.

It has become customary to describe a leading or trailing edge
briefly as subsonic or supersonic accordingly as the component of
free—stream velocity normal to it is subsonic or supersonic, that 1is,
as 1ts angle of sweep 18 greater or less than the sweep angle of the
Mach lines, Thus wings 1(a) and 1(b) are said to have supersonic
leading and trailing edges., In 1l(c) is shown a wing with subsonic
leading edge and supersonic trailing edge. In this case, as in 1(b),
the pressure over the regilon outboard of the tip varies conically
from the apex 0O; whereas the area involved is conical from A, The
wing shown in 1(d), with which this paper is chiefly concerned,
presents the same difficulties, not only at the tips, but also along
its subsonic trailing edge.

A still higher degree of sweep relative to the Mach lines, or
a higher aspect ratio, would result in the trailing-edge Mach lines
intersecting the leading edge. This case, which introduces new
problems, will not be covered in the present paper.

The treatment of the problem will be along the usual lines of
the linearized theories. Since there have been s0 many careful
examinations of the fundamental problem and equations of supersonic
flow, these will be given only cursory mention where necessary to
establish the course of the argument. The object of this paper will
be to give a practical method for approximating the theoretical 1ift
distribution for the conventional swept—-back wing, and the emphasis
will accordingly be on final formulas, where they can be given.

The wing 1(d) with both leading and trailing edges swept behind their
reospective Mach lines, for reasons to be discussed later, can be
treated only by successive approximations. The method of carrying
out the successive steps will be indicated, but the smount of work
required to find the pressure distribution beyond the first approxi-~-
mation appears prohibitive without the aid of a mechanical computer.
The total 1ift and moment can be found to very good accuracy

without much difficulty, however. Methods of approximating the
effects beyond the first step will also be suggested.
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The degree of approximation involved in the proposed estimates
will depend on the aspect ratio and taper ratlo of the wing.
Numsrical examples will be included in the paper and wlll serve to
indicate the possible magnitude of the errors.

The method of canceling the pressure at the wing tips was orig-
inally suggested to the author by P. A. Lagerstrom of the California
Institute of Technology. The treatment of the subsonic tralling
edge is largely an extension of the same method of attack. Applica~—
tion of the methods to other than conventional swept wings is
discussed 1n the present paper.

COORDINATES AND BASIC PARAMETERS

In accordance with the usual linearized approach, the boundary
conditions are satisfied in the horizontal plane, rather than in the
actual plane of the wing. The coordinate system will be chosen so
that the apex of the leading edge is at the origin, the positive
X-axis extending back in the stream direction along the axis of
symetry of the wing and the Y-axls perpendicular to the X-axis in
the plane of the wing. The Z-axis 1s vertical, positive upward.

If the corresponding perturbation velocities are wu, v, and w
in the same order, the pressure difference, or local 1ift, 1s then,
in the linearized theory,

Ap = 2pVu @)
or
4p _ ) 1
q v

where p 1s the density of the air, q the dynamic pressure
V the velocity of the stream. ’ 3 » ond

As previously noted, the conical solutions give values of the
velocity u that are constant along radial lines. Therefore, the
fundemental geometric quantities are the slopes of various raaial
lines. All such slopes are measured from the stream direction as
the reference line. It is further convenient to relate these
quantities to the inclination 1/B of the Mach lines in each problem
gince it is by now well known that the solutions of the linearized ’
supersonic flow equation are essentiglly functions of such a ratio.
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Thus the followlng parameters and variables are defined:

_ slope of leading edge

slope of Mach lines = B cot A

my = B X slope of trailing edge

a =B X glope of any ray from the origin, or
apex of the wing

B = |yM2-1, where M 1s the free—stream Mach number

Other symbols referring to relative angular quantities will be
defined as needed in the same way. A summary of the symbols will
be found in Appendix A.

I — BASIC LIFT DISTRIBUTION

WING WITH SUPERSONIC IEADING EDGE
Pressure Distribution Over Triangular Wing

The general procedure, a8 has been indicated, is to start with
the solution for the infinite triangle having the same sweep of the
leading edge as has the wing under investigation. This basic
solution has only one parameter, the sweep of the leading edge
relative to the Mach lines. Thus the incremental streamwlse velocity
distribution ua(a) over a 1lifting triangular plate with supersonic
leading edges is given (reference 5) by

uale) - 20 cog™1 1-a® (2)
Vo nBym2-1 m-g2
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where a 1s the angle of attack in radians. This function is.
plotted in figure 2.

Total Basic Lift

The integral of the pressure difference represented by this
velocity distribution over the plan form of the wing under considera-
tion will be called the basic 1ift Lg. The integration will be
carried out for case 1(b), in which the leading-edge Mach lines cut
across the tips. The element of area is a triangle formed by two
rays of inclination a and a + da, and having as a third side
either (1) the trailing edge of the wing or (2) the wing tip,
accordingly, as a 1s less than or greater than at, the value

corresponding to the ray through the tip of the tralling edge
(fig. 2). Therefore

: at 1
£9=§[f _mPo wA +f B2 up 4
ga. B o 2 ([m-a)2 Vo ay 282 Vo

B2s2 u, ]

— == da

282 Va

3)

where ¢o 18 the wing chord in the plane of symmetry, wui 1s the
value of ua for a=l and s 1s the semispan of the wing. From
the geometry of the wing we obtaln

- B8
&t = co+Ps/my ()

or

8
mtco -g':t' (mt—at)

The integration of equation (3) yields
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Lo _ _lms® \__mg L1 (mt—at)a] cog—1 LAt
@ w21 Llat? m a2 fmpem) m+at

. {mt 1 _ (nt-et)? ] o
‘at? (my-m) m-at,

Em'b (e )2y 2= cog—1 l-map cog—t _]_-_>
a.t2( 22 )/ mp 2 mg—at mg

2n (mi-at)2 11 (5)
* ngat? (me2-m?) cos™ m}

This form becomes indeterminate when my=m, that is, for an
untapered wing. For thig case

Lo _ {(m+at)‘°' —1 Ly
qa na-tz me-. mtat

+ (m-ay) [ i m(i;ﬁt) J cog™1 ————i:::’t
_ met)2@e), .1
me-1 n
(meat)® (m/l-at2 ‘ 6
+ ) < ot + l)} (6)
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Basip Moment

The center of pressure for this component of the 1lift is
readily obtained when it is considered that each triangular element
is uniformly loaded and therefore has its center of pressure two—
thirds of the distance along the median back from its apex 0., For
a < at, the x coordinate of the center of pressure is

‘ emtco  _ 2Bs (mt—at)
3(mt-a) 3at (me—a)

For a > at, the corresponding quantity is g %. Then the basic
pitching moment about the apex of the wing is given by

- A m
Mo _8[ /% mt®eo® wa f B%s® ua 4 Bsss&ad]
g B L/; 3 (m—a) *Va da + at 38° Va s 1 3a° Va = | (D

w

or

a / 8 1A,
E’i - _ Smps” %‘- /\m 2t > cos™t LHmag + cog™? ————E>
qa

3nay, 3‘/m.z—l w2 m+at mat

_ fmpag)® [ 1 cos— 1AL, __ 1 g1 1WAt ]
2 (mt+m)2 m+at (mt—m)2 m-at
-
3 ot ¥ - :} osg—1 =

+ (ni—at) L EE)E  m? c =

(mt-at)3/m2—1 / m¢2+m2 . m2 >/ - l-mtat cog=1 1 \
+ i c —_— - —

(mtz—m2)\/mt2—l \mta—m2 mg21 /N mi—at m /

.

s f2_
_ (mi—ay ) 3Vn>-1 [mt;/l—at - (mt-&t)] + ﬂ‘m—z"}‘ cosh™ i_t} ®)

(m2—1) m2—m?)
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For the untapered wing

Mo _ _—imBs® 3 ([mP-a2) (mrat) g lHmag
qo 31\'&{;3\/@ him2 n+a+
s 5 38t w240 ] L -mat
+ (mag) [ o mel)?  2Gei)e cos ——
+ (m—at) Tn_a_—-i_)z m2:l cos &
at®wPl o1 1 3(mat)®
+ s cosk at > (@2—1)37 @e—1)3/2
4 B8t l-at2 [l + (em241) (m—at)} } (9)
2 me-1 m(@E-1)

WING WITH SUBSONIC IEADING EDGE
Pressure Distribution Over Triangular Wing
The solution for the flat lifting triangle with subsonic

leading edges has been given by Stewart (reference 6) and others.
In the notation of this paper the velocity distribution is given by

up (a) - m2 5 1
Vo T g (iaB)  Jmear

(10)

where E(Vl—mz) is the complete elliptic integral of the second:
kind, of modulus \/I-m2. It should be noted that for a given plan
form the above expression and all thoss that follow in this section
vary with Mach number only as the reciprocal of E (Ji-m?).
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Total Basic Lift

.

Integration of equation (10) over the wing plan form gives

Lo _ hg2 m2 (mt_at )2 m [c os—1 mA—Ingay,

qa . - cog—t &
at2E (y1-m2) mt2-m2 mt2-m2

m(mtfat) my

+ %}.— Et_g_éj_l;fi) VimRegt2 , (11)

As before, a special form is required when my=m:

Lo Lg2 {(m—at)2 [ 2m-ay
3

qazatzE(/i:_nE) W-2}+at\/r_n2:-a?}

(12)

(o-ay )2

Basic Moment

The moment is obtained from equation (7) with, however, the
third integral deleted, since m< 1, and with m substituted
for 1 as the upper limit of the second integral. Setting %
equal to the expression given by equation (10) we obtain

My _ _~ bm®pe® (m-a)® [ omi2em2 [cos-l mP-mtat
@ 3a;E(Vime) | @m2me) (mg2me)s/2 m (mt—at )

~1 I 3m m

~cost B | L2
m, me2m?  mi2

__m wP-mat . 3 (mg—at)2 s, at® n
mtz—mz[ =+ e ] Y, +-x-i-5—coslr'l;€ (13)
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For the untapered wing the corresponding formula is

Mo __ __8ps ;[ at ?_Qm;ei‘»,).z_} 2 ai?
aa 3a+%E (/1T=2) L3 (meat) + 10 " Sm et

)° 8
_ 7(?;:; N Z:l cosi—1 :;t } (1)

IT — TREATMENT OF THE TIP

In canceling the pressures at and beyond the tip, the problem
is brought within the limitations of the conical solutions by
bresking the region down into an infinite number of constantly loaded
overlapping sectors of infinite extent. (See fig. 2.) These sectors
are bounded on one side by the wing %ip; the second side is the .
extension of a ray from the apex O _of the wing. The (constant).
pregsure on each sector is then 2oV a, where a 1is the
previously defined paramster B timsélthe inclination of the ray
from - 0, the ray in this case being the particular one bounding
the element,

Any element bcundedhby a ray of Inclination a/B will hereinafter
be referred to as the element a, or sector a. The apex of the
sector will be designated by the coordinates X, ¥g and the value of

the constant incremental velocity over the element by wug.

ELEMENTARY SOLUTION FOR TIP

The flow fields to be superposed on the basic lifting triangle
to cancel 1ift beyond the tips will be required to satisfy the
following conditions:

1., The streamwise wveloclty u must be constant over the
gector between the tip and the specified ray. '

2. The velocity wu must be equai in value but opposite in
slgn on the upper and lower surfaces of the sector, in order to
produce 1ift.

3. The streamwise velocity wu must be zero outside the nector
on the free -stream side.
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Lk, The associated downwash or vertical velocity w must be
zero outside the sector on that side adjJoining the wing, in order
not to disturb the boundary condition of constant slope of the wing
already satisfied by the basic solution.

5. All induced velocities must g0 to zero on the Mach cone
from the apex of the sector. ¥or a discussion of thls condition,
see reference T. ’

6. The velocity components u, v, and w must satisfy the
linearized supersonic flow equation and the equations for irrota—
tionality.

The solution of the supersonic flow equations satisfyling the
specified boundary conditions (1 through 5) has been derived by
Lagerstrom, using the method of analytic extension. No attempt will
be made to reproduce the derivatlon here. The discussion which
follows is included only to illustrate the nature of the solution.

Condition (6) may be shown to be satisfied by any analytic

function of the complex variable

€ = y+iz (15)

B xlqéé%-ﬁzyz—ﬁazz

It 1s convenient to set up the solution for u as such a function
of €, sgince the boundary conditlons are largely specified in
terms of u. Condition 4, a condition on w, can also be related
to u by the following procedure:

ILet u represent the real part of the complex analytlic function
U(e) = ulx,y,z) + iu(x,y,z) and let the corresponding complex poten—
tial be

x —
§=f de=q)+iq)
Then w = 0p/dz will be the real part of W = 03/d0z. We may write
x
= = U dx
dz
x

W=f U ax (16)
’ dz

as
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the additional terms arising in the differentiation under the
integral sign being zero.

The lower limit of the integral is arbitrary as far as the
determination of & 1is concerned, since it can only change ¢ by
a constant and its derivatives not at all. However, in order that
condition 5 be satisfied it now appears necessary to specify a
point on the Mach cone as the limit.

Equation (16) may now be written

NnX 7

_ ae . ’ _ x Be/az
W _J Kg—g 3;) <8€dgx) —f de /Ox au a7
M.C. / M.c ¢/

The ratio of partial derivatives appearing under the integral
sign is independent of the function assumed for U. In the plane
z=0, it is equal to

— 2_p2v2
—i—SEyBZ (See footnote 2.)

O
Inside the Mach cone x > By and %56%5 is an imaginary quantity.
€ /0%

It follows that over any region of the X~Y plane in which U has
ne imaginary part, the real part of W will remain constant. Since
the region to which condition 4 applies is bounded by the Mach cone,
on which W is zero, it follouws that conditior ' will be satisfied
if the imaginary part of U 1is zero over the revgion.

It is convsnisnt now to introduce thz variable

- _2B__
1+p2e2

which will be seen to reduce to a = B % when z=Q.

2The general expression. for o¢ gi includes a real part which becomes
indeterminate, rather than zero, when both y and 2z equal zero,
and the argument that follows no longer holds. However, the X-—axis,
along which this occurs, is not included in the region under dis—
cussion (see condition 4), so that the reasoning is adequate.
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Without rewriting equation (15), we will consider the variable
€ to be referred to the apex (xg,¥s) ©of the elementary sector a
as origin and define the new angular parameter (corresponding to a
in the fixed reference coordinates)

t = p 12 08)

This will then be the value of { in the plane of the wing. The
ray t, associated with any point P(z,y) and a particular sector
a 1is shown in figure 2. When the solutlon is being applied to the

region of the wing tip, yg =8 and x4 =-:— so that

ty = B L2 . 19)
a =P x—Bs/a (

In the region of the right—hand tip, t5 1s negative on the
wing, and positive on the elementary sector. It takes on the
following special values:

a on the free—stream boundary of the sector

ta =
tq = 0 along the wing tip
tg = +1 along either Mach line

Conditions 1 through 4 may now be written

12':} o0 € ty <a, lim u(x,y,z) = —£- u, (ug constant)
z=> 0 |
3. a < tyg < 1, ulx,y,0) =0

b, ~L < tg < o, ulx,y,0) =0

Consider now the complex function

U= —1:% cos;l _____a+§ +2af

a+t+lat+2yal (L+a) (L+t)
t-a |

=284 10g
X g_a

(20)

As =z approaches zero through positive and negative values s €
can be seen to approach the real value tg through conjugate complex
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values. The argument of the logarithm in equetion (20) will also
take on conjugate complex values; as will the logarithm itself. The
real part of U, however, is proportional to the imaginary part of
the logarithm and will therefore differ in sign above and below the
X-Y plene, as required by condition 2. In the plane z=0,

_ Ug a+ta+2ata
u =% r.p. - cog—1 --—_Ea-':—_é—-—— (21)

The argument of the inverse cosine in equation (21) 1is plotted
against t5 1in figure 3. When the argument 1s greater than 1 or
lesg than — 1 the function U 1is complex. Both the real part
u and the imaginary part u are plotted, but only for the upper
sign in equation (21).

It will Dbe observed that conditions 1, 2, and 3 are satisfled by
u and condition 4 by the corresponding 1maginary function u. By
equation (16) and the corresponding expression for the lateral
velocity component, w and v are determined, regardless of the
function assumed for wu, in such a way as to satisfy condition 5.
That u alsgo satisfies that condition is readily demonstrated,
aince on the Mach cone x = B/32+22 and § = x/By > 1. When { 1s
groater than 1, the argument éﬂ-ﬁa-ﬁ 1s positive and greater than

one, so that U (equation (20)) 18 imaginary, or u=O.

APPLICATION TO WING WITH SUPERSONIC IEADING EDGE

As long as the wing tapers in the usual sense, that is, from
root to tip, the condition of a supersonic leading edge implies a
supersonic trailing edge as well. In that case the pressure in the
wake may be canceled without inducing any pressures on the wing ahead.
The section that follows will therefore cover completely all correc—
tions to the basic lift for a swept—back wing of type 1l(b). Moreover
when the total 1ift has been found, the drag due to 1lift is also
known in this case, since it is merely the 1lift times the angle of
attack when the leading edge of the wing is supersonic.

Induced Pressure Distribution

The basic lift distribution has been given by equation (2).
Following the procedure outlined in the preceding section, we divide
the 1ift outboard of the wing tip along projections of rays from the
apex of the wing (fig. 2). Beyond a=l no further division is
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necessary, since the basic pressure is constant at wu; ahead of the
Mach line from O, Thus the solution to be superposed may be con—
sidered to be made up of the sector a=m with constant incremental
velocity ug = -~u3; and an Infinite number of narrower sectors
(a<l1l) each with constant infinitesimal velocity

ve = 3B ga (22)

Then the total induzed correction i“;o the basic velocity distribution

is ;

1
= DL pogma Bttmilmby 1 [0 dup oo, attetPate
Au —= cog~ —m——- + = Lo Ty cog— Tos da

(23)

where +tg 1s the function of x,y and a defined by equation (19),
and must be so expressed before integrating; and where ty 1is the
function of x and y obtained by setting a equal to m in tg.
The lower limit ao of the integral corresponds to the most rearward
sector that can influence the pressure of the point x,y; that is,
the sector such that the Mach line from its apex x,s8 passes
through the point x,y. The expression for ap, found by setting
ta equal to -1 and solving for a, is '

s

" B Gs) (24)

8o

This parameter will be additionally useful as the value of a at
which the function given by equation (21) goes to zero and its
derivative has a singularity. If ay 1s equal to or greater than 1,
the induced velocity Au reduces to the first term of equation (23).

From equation (2)

mVa, '
uy = (25)
Y )
and
dup _ 2mVo a

I ‘ 6
da B (m2-a2)/1-a? (26)

The integration of equation ( 23) for the local‘pre‘ssure has
not been carried out, since the solution for this case is obtained’
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more easily by the method of reference 2. However, the total 1lift
induced on the wing by canceling pressure outboard of the tip i?
readily obtained by the present method if the crder of integration
is reversed and the total 1ift induced by a single element foun@
first. :

. Total Induced Lift

~ The change in 1ift due to any tip element a, obtained from
the velocity distribution (equation (21)), is

o .
_ ug _1 at+tg+2aty 4s
(AL)g = 2oV j:l — cos o T dtg (7)

where 48 1isg the element of wing area. If the line +t5 = -1 does
not cut the opposite tip,

2
as . Pumt?s® <_1__ i} ;> 1 (28)
dtg, 2 at a (mt—tg)2

where at 1s the value of a defined by equation (4). Then
equation (27) becomes, after integration by parts,

(AL)g = E%EZ‘STZE uy  (et—2)® g(a) (29)

where

1 Ya+a2 a
gl) = - —-)
-~a, ‘/m.t +m_t2 mg

and the total change in 1ift 1s (taking both wing tips into account)

- 1
—ol- oV 2Bs2 f dup (ay—a)?®
AL 2 \. (A[')a=m + ——:;g— at‘ g (3,) FP 8,2; da (30)

For the first term of equation (30), a is taken equal to m 1in
equation (29), and us equal to wu; (equation (25)). The second
term is integrable by elementary methods. The final result is



18 NACA TN No. 1555

& = emtzs’zm (Ht)a l COS"'l -]-‘-'———-——b -1 ,_n.éﬂll.z_. cos™1l 2 t+at
W@ ga taJnTE:l‘ m(mt—m) my m-at m \/ mg+me2 m—at

_ (mey)® ( cog— ey 1 [wPm o ﬂ%@.ﬁﬁ)
m,

m (mi-+m) miay  m Y mphmg® mat
_t (m—ap)2YVme—L cog-1 TMEL _ og1 i B i e (31)
mt, (at2m2) r'———mta__l m{—~at mt—at

As before, a special form is needed for the untapered wing:

1—may

&

_ ome? (et [ (3m2-1) (m-ay)

- 2 J cos—1
% ga42/m2-1 om (m°-1)

m-at

- (3w-2) (mat) _ 1 D-lmatat
- (m-at) t om (ol) 2:] cos— ot

cos
m+at; m+l m+ag,

2
_ (wrat)” (cog-l limay _ fml
2m

. -m+2mat+at>

(32)

(at)/Iet [ /ag VI
* (\/;_ L

Induced Moment
The moment due to this correction to the 1lift may also be
expressed in closed form, but the formulas are so long and unwieldy

that their integration in general terms was not considered worthwhile,
The moment arm of any element dtg from xg,8 about the Y-axis is

o [t (-2

The moment induced by any element a is
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—~pVp2s°mi 2 2 a—at, .
)y - EEEE ea) 6@+ TER@) ] G3)
where
mg 1 a+a?
Be) = (1 + mt-ﬂ) &) ~ o (Tom) woa) V mmiZ

The total induced moment (including both wing tips) is

Vp2s®m® 1 2 d
R I L S R I

at® at a®

(3%4)

As in the case of the 1ift, the first term is evaluated by setting

a equal to m and wug equal to u,; in equation (33). In the case
that mg=m, special limiting forms of g and h will be required,
namely,

1

g(m,m) = m

= 2% -3
8 (m,m) m (1+m) [l 8 (l+m)]

Integration of the second term can be done numerically for any
particular case.

APPLICATION TO WING WITH SUBSONIC LEADING EDGE

The case of a wing with subsonic leading edge (m¢l) requires
gslightly different treatment because the pressure at the leading edge
ig infinite. The formulas to be obtained for this case will, how
ever, glve the complete theoretic¢al soiution for such a wing as long
as the trailing edge is not also subsonic. Where this condition does
not hold (m.t<l) » Tthe following sections will give the first step in
the complete solution.

Induced Pressure Distribution

, It is necessary to write equation (23) for the induced velocity
at X,y as
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A )
-ua (A A4ty 420E : d. +t,+2at
Au = 1lim (,) cog™l AN f 2 o1 B al a_‘da]
A>mbl =) 80 da ta-a
(35)

where, as before, ta must be replaced by a function of x, y, and
a, (equation (19)). Integration of the second term by parts gives
rise to a term which exactly cancels the first term and is zero at
the other limit, leaving after substitution for wua,

Au _ B (xi8y) [Poley) [T da | P
Vo & (/1-uw?) ¥ ‘/&:o (By—ex)/ (m*—e2) (1+a) (a—ao) (36)

: This integral is finite and can be evaluated in ‘terms of
elliptic integrals as follows:

Mu __m3/2 2B (s~ )
Vo " mime [V oxer
Rl e {F‘i’gg:)[ K(k)E(k')] +K(k)E(w,k')} (37)

(m.—ag) (1—1!1) k' = i/1-Xk2
2m(a°+l) ’

+ :
sim1 | /g-g-—gf:i%l . The elliptic integrals
o

F, K, and E are extensively tabulated in reference 8. They are also
available in Pierce's Table of Integrals and most handbooks, but
experience has shown that k' 1s generally very nearly unity and
that K(k') as tabulated in the handbooks is not always satisfactory
for interpolation. The following series (reference 9) converges
very rapidly and is preferable for computing K(k!') when K is small:

where the modulus k

and the argument

K(k') = —log X ¥ —(log m +1)x3- ?(log '-E'+ %)k‘*—...

At the tip, y=s and the first term in equation (37) vanishes.
In the second term, ¥ becomss £ and E(V,k') and F (@,k?)

reduce to the complete integrals E (k') and K(k'), respectively.
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The induced velocity correction Au will then be seen to be. exactly
equal to -ua, bringing the 1ift to zero at the wing tip.

Drop in Lift Across Tip Mach Line
An interesting effect shows itself at the other limit of the

tip region — the Mach line from the tip of the leading edge. Along
thig line only the influence of the leading-edge pressure 1s felt;

that is, ao=m. Then k=0, k'=1, K(k) = % K(k') = w and B (k*)=1.

E (V,k*) reduces to sin ¥ = —5%51 and finally

Au _ - g
Vo  E(/1-m®) /2 (x+By) (ux—ps)

(38)

This result corresponds to a finite drop in pressure across the. Mach
line from the tip, an effect which does not appear as long as the
leading edge is ahead of the Mach lines. The magnitude of the drop
relative to the pressure Just ahead of the Mach line should be of
interest. This ratio is

ég=168/ (r2a2)
uaA Y 2 (x+By) (mx—Ps)

s
Since a=By/x, and on the Mach line from the tip B(s-y) = x - Em—,

the ratio Au/uA can be rewritten very simply in terms of m and

a ag follows:
b [lse)wie) (39)
uA 2m (1+m)

This function is plotted in figure U4 against a/m.

It will be seen that the percentage of loss of 1lift at the tip
is very large and, in fact, that for any but the lowest aspect ratio
wings the 1ift remaining in that region, which drops to zero at the
tip itself, is almost negligible. Some indication of this effect ig
contained in the results of reference 10 for the limiting case of
m=0, It is an effect of considerable practical interest, suggesting
as it does a considerable change in pitching moment with Mach number
as well ag the inefficiency of the tip area of the wing.
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Total Induced Lift

Proceeding to the calculation of the total correction to the
1ift, we integrate the change in 1lift (AL)sy (equation (29))
induced by each element a, over the rangs at < a <m. Again
we encounter the difficulty that ua > oas a-> m and must
therefore write the total 1ift in terms of limiting wvaluss.. For
convenience the function

ol

@ = (1-4) @ (:0)

a at

from equation (29), is defined. Then the total induced 1lift, corre-
sponding to equation (30) for the preceding case, may be written

SN G(a)da] (1)

Integrating by parts results in cancelation of the first term N
inside the brackets. Since G(ay) 1s zero, equation (41) reduces to

a
AL = 2pVme@Bs2  1im [—uA(a)G(a) +f
a>m at,

m
AL = —20Vmi2ps? f up @)G! (&) da (12)
at

Equation (42) has been integrated in terms of elliptic integrals,
but because the result involves several new functions it was thought
better to present it in an appendix (Appendix B). For pracbical use
graphical or numerical integration may be preferred. Here again,
however, the difficulty arises_at the leading edge that ua and
therefore the integrand of (42) becomes infinite, although the inte—
gral is finite. For numerical integration it is possible to dispose
of the singularity by integrating once more by parts. A somewhat
gimpler method is to write

AL - ‘y?pvny]"ti?sa {/;:1 up () [Gf @)-G* (m)} da +Lj up(a) G' (m)da }

The integfand of the first term can now be shown to approach
zero as a ‘approaches m, and the second term is readily inte—
grable, since Gf(m) is a constant. The result, when ua has
been replaced by its value from equation (10) and the second term
integrated, is ‘ B
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AL In2m 2g2 | G
@ g (\/1;? ) V n at VmP—a2 -

o (o) = 22t [(22 + B8t

2 a-ey, J (kk)

gla) - ‘
a Im-a > 2 (mt—a )y (mt+mt2) (a+a2)
When my=m, G' (m) reduces to

_map [1 . ._.ga*_-_a_t__]
a.:cm4 (14m) 8ay (L+m)

Induced Moment

The moment induced by cancellation of the tip pressure is found,
as in the preceding case, by the integration of (AM)s (equation (33))
over the appropriate range of a. Again, the actual Integration is
best done numerically for any specific case in which the moment may
be required. Because ug becomes Infinite at the leading edge, it
will first be necessary to integrate by parts, as in the case of
the total 1ift. Following the same procedure, we let

.. E@) =1

<1 _.3.L.>2 [g(a) + 2% ) ] (15)

at a 3at
from equation (33), so that the totel induced moment is

MM = 2pVB23%m211im [—uA(a) H(a) +f —= H(a)da J
a->m at, da

= — 2pVBPa®m? ,fm uA(a.)H' (=)da (46)
at,

For numerical integration, the procedure outlined for finding the
1ift is repeated, giving

pu _imPmi2ecp —1 8t H* (a)-H* (m) '
= _——-—-—E( = [H' (m) cos T = +£ _—'__—\[ﬁa.‘_gi da J (47)
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B (o) = &2,

2a- 88, it (a—at)2 |
. { t , e-ay | mt(a-at) }g(a)
at<a

a '  mg-a  3at (e-e)?

cams (2o RS ) (o)
384 -\ & my—a :

a-aq, { a-at [ my 1 ] 7
— . ) l + l + —_ i
2 (mt—a)Ymy +m2 \/a+a2 1 - 3at, “mg~a 2 (L4mg) J f/

When mt=m, H! (m) becomes

P

et /[ at , (mat) (1+2m) ] 1 | at
at®m (L+m) | m 6at (L+m) 2 m

2m ——
ém (1+m) 2 m (1+m)

_fmag)@eom) (1, . 12w } J»\

j

ITTI — WING WITH SUBSONIC TRATLING EDGE -

The problem of satisfying the Kutta condition of zero pressure
difference at the trailing edge and in the wske behind a highly
swept wing is attacked in a manner similar to that used on the tip.
The region behind the actual wing surface is divided into segments
over which constant pressure increments may be assumed by extending
the rays from the apex cf the wing through points x5,ys on the
trailing edge. This division of the wake region is indicated in
figure 5, with a typical elementary sector a indlcated by heavy
lines.

ELEMENTARY SOLUTIONS FOR TRAIIJNG-EDGE

The element in this case differs from that in the preceding
one in that the fixed side 1s no longer parallel to the stream but

is inclined at the angle, .tan™? %i:— to it. The boundary conditions

to be satisfied by the elementary solution are therefore (on Jche
right—hand half of the wing)
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1.
2.} a5 ta

£ oy us=tuyy
3 -l <tg < a u=0 z =0, {=1t,
y, mg <t; < +1 T=0

in addition to the general conditions 5 and 6 stated previously.
The pertinent results of the preceding discussion will be assumed
in order to shorten the discussion at this point.

The variable t, is that defined by equation (18) and refers

to the slope of rays originating at the apexes of the tralling-edge
elements a. Along the trailing edge

Ja = %ﬁ (Xa"co)

Since a=BJ—5?, we may solve for x5 and ¥yg as functions of a
a

and the constants mt and co:

Xa = mjgg
mi—8.
(18)
Bya = TiCo?
m—e,
Then
tg = By (mi—e) — micoa (lt9)i
X (@g-e) — moq

The solution for the oblique triangle satisfying the specified
conditions is (in the plane of the wing)

1 (l—a) (ta-m‘b) - (mt—a) (l—ta)
(1-mt) (tg-a)

U = TrePo 3_"@ cos—

(50)

Equation (21) will be seen to be the special case of equation (50)
in which my=0, with the axes reversed because the relative positions
of wing and element are now reversed. (See fig. 5.)
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At this point a difficulty not encountered in the trestment of
the tip must be considered. This difficulty 1s most apparent in
connection with the element a=0, that 1s, the right triangle with
apex at the trailing edge of the root section. The Msch cone from
that point includes segments of both wings, so that condition 4 should
properly be applied over part of the negative range of t; as well
as the positive., This could be done for a=0, bdbut for any other
small value of a, the area to be so treated would be nonconical
with respect to the apex of the element a and therefore the bound-
ary condition of zero dowrnwash could not be fitted into the conical
solution. Thus a deviation from the flat—plate boundary condition
seems unavoidable. However, the errcr can be minimized by the choice
of a solution for a=0 +that does not introduce any downwash on
the far wing.

The pressure at the rcot of the tralling edge 1s most simply
disposed of by means of a symmetrical solution satisfying the
following conditions:

—mf <to < +mg vo = up (0) -

o
i

u=o0
g < to € + 1 i

where to refers to rays emanating from the trailing edge of the
root section (a=0, Xa=Co, ya=0)+ The required solution is

2
U = TePo %? cog—1 (L4m2) bo2mt? (51)
' (1-m®) 167
From equation (10)
moV
Up = ——=— (52)
ﬁEQ/l—m?j

The major portion of the pressure in the wake will be canceled
by solution (51); the remaining pressure may be canceled by the

d
solutions given in equation (50) where ug is, as before, ;Z? da.

The downwash induced on the far wing by the solutions should be, and
has in fact been found to be, small, first, because dup/da 1s small;
and second, because as a and u, Increase, the portion of the far
wing surface affected by the element a decreases in area and
increases in distance from the element.
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APPLICATION AT TRATILING EDGE
Pressure Distribution Near Trailing Edge

In determining the pressure at any point x,y on the wing
surface 1t ig first necessary .to determine the most rearward
olement ag that will influence the point x,y. As before the
value of ag 1s found by setting tg (equation (49)) equal, in
this case, to 1, so that

ap = mt 180 = X (53)
Py+comy — X

The velocity induced at any point within the Mach ccne from the
vertex of the tralling edge by superposition of the trailing-edge
golutlons discussed thus far 1s given by equation (51) plus the
integral of equation (50) with respect to a, from a=0 to a=ag.
The total is to be subtracted from the tasic distribution given by
equation (10).

Total Induced Lift
If the Mach lines from the apex of the element a do not cross

the leading edge of the wing, the conlcal element of area for the
integration of the pressure to the tip is

_ Bm2e? (at-a)2 dtg

as L
2at? (mt~a)2  tg2 k)
For the symmstrical solution, a=0 and
as_ _ ps2_
dto 2to2
Integrating equation (51) over dS from to=mt to to=l and
multiplying by two to take account of the negative half of the
wing gives, for the symmetrical solution,
AL _ _—ls?m [1 2 g (/iom2 ]
AL _ _=be®m |1 _ 2 g ¢im?) (55)
W R (1n2) n
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¥

When mi 1s nearly 1.0, the expresslon in the brackets may be
difficult to evaluate accurately. The following series expansion
(from reference 8) is useful:

1—-33(»/'___—)—1'mt { ~R <-l2-+ 1_ge Jff-Rh...)]

2 222 * pel2éz
. e
1+my

where R =

The total correction to the 1ift induced by one of the obligue
triangles in the wake is found by integrating equation (50) over dS
as given by equation (54), from the trailing edge to tg=l. The
resulting formula is

_ —pVmy2e2B (ag-a)2us | 1 1 ( [loge) Q-a) _
)y = = :,1;2 (mt-;)z [;1-1: * e ( me l>} (56)

For the total induced correction to the 1ift due to the oblique

elements, (AL)g will have to be integrated over both wings, after
gubstitution for uy, and added to AL obtained from equation (55).

The Iintegration has been done for both tapered and untapered
wings and results In the followling formulas:

For my # m,

> .
AL g m? (a4 )? [- TEMAE o1 I ]
ga  at2 (m2-m2)E (\/ 1-m2) VI 2—m2 m (mt-at ) my

+ (nPomgay) - {em_ﬁ;e‘:a‘t“ [1; /m;ﬁat —at) J} _ omay (mp-ay)

+ Vmy, (1-n) (o +m) {% [(mﬂauc)2-1’[—”5—---11—1 + (may)® 22 ] , [F(%, k)

~F (%) ]

T nEa [(mz-mtat)z + 3mé (mt—at)‘?] [E(@t,k) — E(8,k) :!
G7)
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where
+m) (-8 m—:—;i 2m (l—my
O = sin? (mt ) ¢ t), 0o = sin?t / 1 and k = ——--(—-—-——)—-
om (mi—a4 ) ¥ 2mg (@i +m) (1-m)
For mg =m,

1-m

&L _ - 2l ih(m"’aft) —p _mPoay® | (may)? /%.__;.)
[ 3m2 t o2me 8m? \

_1 [l N 3 (m+ay) _ (e ) (3—111)] (1~e2) (m+ay)
L m km (1-m) V m

itm

2‘/2 (1—m)

[1 (miay)® 3-n)  (z-ay)2 (5m-3)
T P (14m) ¥ 16m2 (1-m) ]

—1 m(3-m)—(3m-1)ay 3-m .
X [cosh o) ) cosh—1 T (58)

L]
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Induced Moment

Any constantly loaded element of area 45 dt, from xg4,¥4
has a moment arm about the Y-axis given by a

s [ - e (59)

ay (mg—a) 3ty

For the symmetrical solution, a=0 and this expression reduces to

—8,
Bs <L’£t__z s 2
atmyg 3to

The moment induced on both halves of the wing by superposition of
the symmetrical solution is, from equation (51)

2 1 L+my2 ) to2—2m2
M - pVBsuof mey 2 )cos—l( m2 ) to t< 4s

2 at
T my \ Sl 3t (1-m2)t,2 dt, °
and
oM __ hmps At [1 -2 E(\/J:m?)] + Tl—mta (60)
Q@  m;23E (/1—m2) at n

. The moment induced by a single oblique element a 1is most
conveniently written in two parts, corresponding to the two terms
of equation (59):

= :_Bs_@_t:it.)_m)a 61@))

(ca0) o

8,1
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In Q“”a,a, the corresponding bracketed exrression equals
1-m¢, qQ [/l+my mt> 1.3 1.3.5 .2 > }
—— —— l F— + +.un
hme2 [3%’ 2 <2 * 3 g “* %8 ©

SUCCESSIVE STEPS FOR COMPIETE SOLUTION

Application of the procedure described so far will result in
cancellation of the pressure along the forward part of the tip and

along the inboard portion of the trailing edge. Over that part of
the tip that lies within the Mach cone from the apex of the trailing

edge, however, the method of removal of the tralling—edge pressures
has induced an extraneous negative pressure, for which an additional
correction will have to be made. Similarly, the tip solutions have
introduced negative pressure along that portion of the trailing edge
falling within the Mach cones from the tip. There 1s also a complex
distribution of pressure in the wake and in the stream beyond the
wing tips.

The 1ift restored to the wing as a result of the cancellation
of these erronsous negative pressures will be referred to as secondary
corrections to the basic 1lift.

Figure € shows the regions near the wing tip affected by these
secondary corrections. The errors Introduced by the primary correc—
tions occur along and behind the tralling edge from tp = —~1 to the
tip, and along and outboard of the tip from t, =1 to the trailing
edge. Since in general very.little of the wing surface lles within
the Mach cones (shown shaded in fig. 6) from these regions, and the
actual flow pattern of the viscous fluid would differ considersbly
from what we wculd calculate, 1t is questionable hcw far one should
go in attempting to correct for the residual pressures there. The
exact procedure willl be outlined here, and may be feasible when a
mechanical computer is available to perform the integrations
numerically. A method for epproximating the pressure distribu—
tion, 1ift and moment will be suggested in a following section.

It should first be noted that the distribution of residual
1ift in the field 1s no longer conical with respect to any one
point, but is composed of an infinite number of superimposed conical
fields originating at various polnts along the trailing edge and tip.
In order tc cancel these pressures accurately, 1t 1s necessary to go
back to the application of the elementary solutions at the wing tip
and trailing edge and cancel the extraneous pressures introduced by
each one. This will Involve, for each element, the integration of
an infinite number of elementary solutions of the other type; that
is, trailing—edge--induced pressures will be canceled by the applica—
tion of tip solutions, and vice versa.
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Consider an element at the trailing edge (fig. 7) with uniform
pressure ug, g&lving rise to a pressure fileld defined by equation (50)
in terms of tg, the angular displacement around xg,ya ©on the

trailing edge. The veloclty

1-a) (t -~ 1%
(Au)y = 22 cog—1 {2 (%fmi)g::g( a) (63)
with
ty = pbon (64)

induced at points xp,y, on the wing tip by the individual element
a wmay then be removed by superposing triangular elements at the
tip formed by extensions of the rays tg from x,,y, on the

trailing edge. Such tip elements in turn induce velocities within
thelr Mach cones which may be expressed in terms of the angular
displacement around the apexes of the element xy,yp. This dis—

placement may be denoted by the parameter

J=3yb
tp = Bi__—xg (65)

which is a function of & and tg. Then, from equation (21), the
effect of a single tip element bounded by the ray t, 1is proportional
to

1 cos—1 t§+tb+2tatb (66)
% ty=ta

Since (Au)g = O at ty = 1, the total velocity induced at a point
x,y on the wing by removal of all tip pressures resulting from the
wake element a will be
tp= —1
4 (Au — ta+tp+2taty : ;
-1 (Bu)q cos _—r__a b ath dta 67)
a dtg tp~ta

=1

The derivative d(Au),/dt, 1s infinite at the lower limit,

In order to perform tge(Aisldicated integration graphically it is
preferable to write -—a-g—ﬁ dty = d(Au)s and integrate by
a



34 NACA TN No. 1555

plotting the inverse cosine function against (Au)g for the
indicated range of values of tg.

The foregolng procedure must in turn be followed for values of
a from a=0 back to that value of a for which ty (tg,x,y) =-1
when tgz=1 (i.e., for which the point x,y 1ies on the reflected

Mach line from Xx,,ya), &and the results integrated with respect
to a. .

The integrated expressions, (29) for the 1i1ft and (33) for
the moment due to each tip element, apply to the elements from
Xp,yb 1f a 18 replaced in the functions g and h by tg and
elsewhere by a (xp,yp) = Byp/xp. In the coefficient, — d(Au)g/dty
will replace u, as the constant velocity over the section. For
the total increment in 11ft and moment caused by correcting for a
single wake element a, (AL)p and (AM)p obtained in this way
would have to be integrated with respect to tz from t =my to 1.
Again, since d.QNu)a/dta 1s infinite at the limits, 1t 18 prefer—

able to integrate with respect to (Au)g. The results would have
to be integrated again with respect to a, from a=0 to a=a:,

In canceling the tip pressures 1ntroduced'by the symmetrical
solution (equation (51)), the same procedure would be used with

(Au)g replaced by

L 4ms 2 ) £ 22ms 2
U0 gy L7 bo®-2ms
n (1-m¢2)tq2

and tg = tg, Xg = cg and yg = O. Integratlion with respect to
a 1s, of course, not required.

- A similar procedure to that Just outllned would be followed
in canceling the extraneous pressures introduced at the trailing
edge by the original application of canceling solutions at the
tip. In this case, however, the presence in the baslic solution
of infinite velocities at the leading edge leads to considerable
difficulty in obtaining a satisfactory method for numerical
integrations. Since the results presented in flgure 4 suggest
that the wing tip should be raked inward for efficient design,
it does not appear worthwhile to develop this part of the solution
in any further detail. . The approximate method for treating the
extraneous pressures at the tip presented in the following section
is considered satisfactory for practical investigation of the
conventional wing tip.

Where the Mach number is very low (close to l.O), it might be
necessary to carry the foregoing procedure through another step,
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canceling the pressures introduced at the opposite edge by the new
solutions in ty. It 1s clear that the process cutlined is a
converging one, since (1) the functions givinz the pressure distri-
bution are everywhere smaller in value than the pressure being
removed, and (2) the area affected by each successive step is
smaller than the rreceding. The approximations suggested in the
following section may be made at any later step in the calculations.

METHODS FOR APPROXIMATE SOLUTION

The following method of approximating the secondary corrections
will result in cancellation of the extraneous pressures at the
trailing edge and along the tip of the wing, but will not take
account of the exact variation of pressure in the stream. It will
be apparent however, that the residual errors will be small, partic—
ularly in thelr effect on the wing.

Correction for Tip—Induced Pressures

The assumption will be made that since the pressures induced
by the tip are in the main due to cancellation of the infinite
pressure at the leading edge, the extraneous pressure fleld introduced
by the tip solutions will be very nearly canceled by a pressure field
conical from the tip of the leading edge (fig. 8), provided the
pressures are made to cancel exactly along the tralling edge. In the
conical pressure field to be superimposed, the velocities are held
constant at Au (equation (37)) along the rays ty projected from
the tip of the leading edge back into the wake. To effect this
approximate cancellation, values of Au are calculated from
equation (37) for points xp,yp along the trailing edge. The
corresponding values of t are

ty = P (68)
xp - %ﬂ.

Lst the particular point at which the line ty = -1 1intersects

the trailing edge be designated by x*, y* and other symbols
referring to that point be similarly starred. Then the velocity
induced at any point x,y on the wing by removal of Au along the
trailing edge will be (from equation (50))
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—Au* 2 (t*my, )— (my+1) (1-t*)
x O =Gy

1 ftb:l oy () () (aty) (1t)

nfoy (i) (tpt) Ym  (69)

where Au* 1is given by equation (38), t* 1s the parameter BI:-L:
X

end t}, 1s the previously defined parameter (equation (65)) measuring
displacement around other points xpyp, on the trailing edge. The
upper 1imit of integration is a function of the point x,y at which
the pressure 1is being determined.

The derivative dAu/dty would have to be determined numerically
or graphically from a plot of the calculated values of Au against
tye In order to avoid this procedure, it is preferable to rewrite
equation (69) as

Aux 2 (t*mg)- (mi+1) (1~t*)

x O (mg) (6%41)
't-bzl
P, (-tm) (tp-mt )— (mt—tm) (1-tp)
x £u* cos™ (1-mt) (tp—tm) dAu (70)

and integra._te by plotting the inverse cosine function against Au.

For the total change in 1ift and moment resulting from this
correction, equations (56) and (61 (a) and (b)) would be used, with
the following substitutions:

for ug, Au* and dAu/dty

for a, outside the brackets, By*/x* and Byp/xp

for a, inside the brackets or in Q, -1 and tp

The total secondary tip correction to the 1ift (over both halves of
the wing) would then be (from equation (56))
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which should again be integrated by rewriting {@Au/dty) dt, as dlu.
The corresponding correction to the moment can be written similarly
from equation (61). The expressions in the brackets become indeter—
minate when tp = O, Their limiting values may be obtained directly
from the series expansions in Q, since Q(o) =

Correction for Trailing-Edge Induced Pressures

The residual pressure at the tip induced by the application of
the trailing-edge solutions has a somewhat different distribution
from that induced at the trailing edge by the tip solution. A
procedure corresponding to that just described — that 1s, assuming
that the pressures induced by the oblique solutions, as well as by the
symmetrical solution, all originate at the center of the trailing
edge — 18 not so readily Justified as in the preceding case. However,
the pressures induced by the oblique solutions are quite small, and
their secondary effect, particularly on the total 1ift, might in fact
be neglected, if it were not comparatively simple to take them into
account with this assumption.

The approximation is made by substltuting in the previously
glven equation (67) for the secondary trailing-edge correction to the
local velocity at any point x,y, the value of

Bs

Ip—Co

to =

for tgp. The approximate induced velocity correction 1is therefore

tpy= -2
_ %‘,—f cos—1 tottp+2toty dAu (12)
to=1 tp—to

where Au 1s the total (negative) velocity remaining at the points
xp,8 along the tip, found by summing the values fram equation (51)
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and the integral of equation (50).

Equations (29) and (33) are applic&ble in calculating the
total correction to the 1ift and moment, with the following sub-
gtitutions: -

for ug, dAu/dte

for -a, except in g(a) and h(a), -Bs/xp

for g(a) and h(a), g(ty) and h(to)

Thus the total secondary tralling—edge cha.nge in 1ift (both halves
of the wing) would be

2pVm 2
pat?

bfal =

to=1 2
fc (eyxy-Bs)? &(ty) ddu(ty) (73)

o=n{

and the corresponding correction to the moment can be written
similarly from equation (33).

Further Simplifica.‘r jon cf Lift and Moment Celculations
and Summary of Formulas

Effect of tip.— The primary corrections to the 1lift and moment
due to reducing the pressures at the tip to zero are obtalned without
difficulty from equations (43) through (47). Calculation of the
induced pressures at the trailing edge in order to make the secondary
correction 1s, however, somewhat tedious. These pressures vary very
1little over the Mach cone from the tip, and the variation is nearly
linear. This calculation and, in addition, the integration in
equation (71) can therefore be eliminated in many cases without any
significant loss in accuracy by considering Au 1o be constant at
some intermediate value between Au* and -us(ay), the value at
the tip. The secondary correction is then simply

2g2 »
AL = —2pVm2e2p &tx*"BY*> /l'mt < o \/2_ >Au (74)
o at® . \mgxpyX S ;

where Au may be the average of Au* (equation (30)) and —up (ay,)
(equation (10)).

Effect of trailing edge.~ The major part of the primary tralling-
edge correction i1s accomplished by the application of the symmetrical




solution and, in many cases, the integration of equations (56) and
(59) can be omitted in calculating the total 1ift and moment. Then
‘the primary effect is given by equation (55). Calculations of the
gecondary effect may be simplified very greatly by ignoring the
effect of the oblique elements, and using Au as calculated directly
from equation (51) in equation (73) and in the corresponding equation
for the moment.

WING WITHE CROSS-STREAM TIPS

The fact, mentioned earlier in this paper, that a drastic
reduction in 1ift takes place behind the Mach cone from the tip of
the highly swept wing suggests immediately the consideration of the
effect of cutting off the tip areas along a line normal to the stream.
The resulting plan form (fig. 9) presents obvious structural adven-
tages and may also be expected to approach the triangular wing in
its longitudinal stability characteristics.

In calculating the pressure distridbution over such a wing, only
the trailing-edge solutions apply. For the total 1ift and moment,
new integrations must be performed, since the elements of area are
now different., The characteristic ray a{ 18 now replaced by one
through the inboard end of the cross—stream tip (a; in fig. 9).

For a .less than this value,

as _ Be®
da 2m2
and

. 2
o (8=)

X, being defined by equation (48). It is convenient to replace
co by the following expression

ortt (e m)

Then the basic 1lift is
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Lo _ ke [ (m‘b“al)z .. [cos—l 8t cos—! I ]

qa E(\/—:n?) (mta__ma) \/ mmt—a.l) o my
_YrPe,®  om } ¥ éoe“l E-l} (75)
mg-a) by m ‘
When m =m,

%—E&f—-){ _1‘1'*—[(2”'“)‘/_—-'2(“‘)2]}(76)

The decrement of 1ift due to application of the symmetrical
solution i1s (provided, as before, that the trailing-edge Mach lines
do not intersect the leading edge)

AL __ —ha,2s2 _ _ ,
L mt—-—-l—-—w___)[ K VIR -1 (1)

Except for very high aspect—ratio wings, the tralling edge of
this configuration will 1lie entirely in that range over which
dup/da 1s negligible compared to ug. For this reason, the integra—
tions necessary to find (AL), for this case have not been performed.
They are, however, elementary in nature and can be readily carried
through by the designer considering a wing of this type.

The moment of the basic solution about the apex of the wing 1s

Mo _ _ hpg3 %g)z (emt2+1®) (mi-ay) —a)mt
9% 3pE (1?) [ @y 2m?)3/2 [cos—l m (me—a,)

-1 I 1 mt
- oo ol (ke el ) VT

+ m(mt—a,) + m(mt;'al) + 2 cos™t %1-] (78).
w22 m2
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L1
When my = 1,
PN -3
Mo | oot 1w [1. 200 (4, I ]
ga  3oE {fi-xZ) Lo 3m
A 3 :
a .
- 7(m~a¥l‘ + cos=l =% ¢ (79)
15m° m )
The decrerent in moment due/;o the removal of ug at the
treiling edge 1s simply co + % \\%f-- coi> times the decrement
in 1ift, or 7
8 S
MM = Bs Bmy—a1) (30)
3mmy,

where AL 1is given by equation (77).

Corputations have been made for a wing of this type and will
be presented in a later section.

OTRER APPLICATIONS OF THE OBLIQUE SOLUTIONS
Low Aspect Ratio Wings

Variations of the method of this paper could be used to obtain
the pressure distributions for a variety of rectilinear plan forms
other than the conventional swept wing. For example, the reverse
delta wing (fig. 10) with trailing edges falling within the Mach
cones from the tlps can be treated by using as the basic solution
that for a rectangular wing with raked tips (given by Hayes,
reference 11, and others), the deficiencies from the two-dimensional
pressure being additive where the Mach cones overlap. The oblique
golutions of the present report would be applied to cancel the
pressure deficlency introduced along the rear of each tralling edge
by the simple conical field from the opposite tip. Other low—aspect—
ratio wings can be treated similarly, provided cancellation of presgsure
ahead of a leading edge is not involved.
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Reverse Taper

Extension of the procedure to wings with reverse taper is
obvious. In this case the wing with subsonic trailing edge may have
either subsonic or supersonic leading edge. (The case of swept—
forward leading edges requires separate consideration.) Starting
with the appropriate basic solution, the subsegquent procedure and
formulas of the present report willl apply without modification.

IV — NUMERICAL EXAMPIES

The method has been applied to two wings with 63° gweepback of

the leading edge, one with considerable taper and one with constant
chord, at a Mach number of 1.5. The wings are shown in figures 11
and 12. From the dimensions given, the following quantities,
required for the computations, can be calculated:

Parameter Tapered Untapered
B 1.118 1.118
m <570 =570

E (V1-m®) 1.256 1.256
my « 906 <570
at .528 .358
S 26 sq ft 58 sq ft

It should be noted that the dimensions and calculated values
omit the tip fairings, which are formed by rotating the (symmetrical)
tip section about its chord line. The vortex sheet with which a
lifting surface may be replaced for linear potential flow calculations,
would have a similar rounding off outboard of the last vortex without
adding any 1lift.

The basic velocity distribution (equation (10)), which depends
only on m, is the same for both wings. Corrections to this dis—
tribution, taking place within the Mach cones from the trailing edge

and tip, cover so small an area of the tapered wing (fig. 11), the
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trailing edge of which almost coincides with the Mach lines, that the
variation within that area is not of much interest. The effect on
the total 1ift and moment will be given later. The pressure distri-
bution over the constant chord wing will be discussed first in some
detail.

PRESSURE DISTRIBUTION OVER SWEPT UNTAPERED WING

In practice, it is convenient to compute all velocities in terms
of u,, the basic perturbation velocity along the X—axis, in order
to avoid dimensionality and numerous multiplications by a constant
factor. All but the final figures will therefore show the velocities
in ratio form.

The decrement in velocity resulting from removal of constant
pressure across the wake (symmetrical solution, equation (51)) is
plotted against t, in figure 13. This component is of course
dependent only on the sweep of the tralling edge relative to the Mach
lines and would apply equally well to wings of any span and taper
having the same trailing-edge sweep angle.

The decrement in velocity due to removal of the remalning
pressures at the trailing edge was found at various stations span—
wise and chordwise within the Mach cone from the center of the
trailing edge and added to the decrement shown for the corresponding
value of to 1n figure 13. Evaluation of this second component
involved the graphical integration, for each point, of equation (50)
with respect to a. Figure 1L shows some typical plots of this
function. The value of a at which each curve falls to zero 1s ag
(equation (53)) for the specified value of x and y. The velocities
obtained in this way are plotted spanwise for two values of x  in
figure 15.

The gpanwigse distribution of velocity decrement within the Mach
cone from the tip, calculated by equation (37), is plotted in
figure 16.

Figures 13, 15, and 16 represent only the primary corrections.
In figures 17 (a) to (d) these corrections have been applied to the
bagic velocity distribution along the chord at each of four spanwise
stations, and the results converted to terms of Ap/qa by the factor
lug/aV = bm/BE (/1-m2)., The magnitude of the extraneous negative
pressures at the trailing edge remaining after the first approxime—
tion can be seen in the last two of these figures. Corrections have
been added to eliminate those errors due to the tip solution by the
approximate method (equation (70)) of the preceding section. The
errorg introduced by the symmetrical solution have been eliminated
without resort to approximate methods. The errors induced by the
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wake gradient solutions were neglected because of their location

far back on the tip and thelr relatively small values. The effects

of these secondary corrections are shown in figures 17 (c) and (d).
For the final curves the pressure distribution has been arbitrarily
faired to zero, taking cognlzance only of the polnts at which
succeeding corrections enter. It can be seen by drawing another set
of reflected Mach lines at the tip of figure 12 that the area affected
by this approximation 1s very small and is in that region where viscous
effects would tend most to invalidate any results calculated by the
present simplified theory. A three—dimensional view of the final
pressure distribution is shown in figure 18.

LIFT AND MOMENT COEFFICIENTS

The various components of the 1ift, -with the equations from
which they were obtained, are given in table I for both the tapered
and constant—chord wing. The last correction was made in two parts,
one for the symmetrical solution and one for the effect of the
oblique solutions, assuming the latter to be conlcal with respect
to the apex of the tralling edge, in order to estimate the magnitude
of the error involved in such an assumption., The value given
represents the upper limit of the possible error. In the secondary
correction for the tip effect (correction at the trailing edge)

90 percent of the effect was obtained from the first term of
equation (71), only 10 percent being contributed by the integral.

The value of Cr, obtainable by discarding the trailing-tip
regions of the constant—chord wing was also estimated, using
equations (76) and (77). The modified wing had the same span as the
original wing, but its area was decreased to 40.8 square feet and its
aspect ratio increased from 1.725 to 2.45 by removal of the trailing
tips. As a result the value of CL, 1increased from 2.0l to 2.63,
approaching that for the highly tapered wing.

(It may be remarked here that the pressure distribution for the
modified wing 1s identical with that over the original wing (fig. 17)
up to the point at which the tips are cut off, where the pressure
drops discontinuously to zero.)

The components of pitching moment for the three wings are
presented in table 1II. Second-approximation corrections were not
made where the corresponding component of 1ift was negligible.

DRAG DUE TO LIFT

With the value of Cr, calculated, it 1s possible to find .
immediately the drag due to 1ift for the specified wings. Ag pointed
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out in reference 12, where similar calculations are made for a more
limited class of wings, the flat wing at an angle of attack is
subJect to a drag which is merely the component of the 1ift in the
flight direction, or o« times the 1ift, and to a thrust which 1s
due to the infinite suction force at the leading edge. If, as in
the examples calculated, the Mach lines from the trailing edge do
not cross the leading edge, the thrust on the leading edge is
exactly that on the triangular wing of equal span at the same angle
of attack. From reference 12, this thrust, in coefficient form, is

By 1-m? 2 V
Lm CLA

where CLA is the 1ift coefficient of the triangular wing. From
reference 6, CL, of the triangular wing with m<l is ,

—erm Using this value and the area of the triangular wing Bsa/m,
BE (/1-m2) . '

the thrust force can be expressed in terms of the sweep of the trap—
ezoidal wing as follows:

nsﬁ{l—m? q0P

[E(|/ -n2) ]2

The total drag for the swept wing is therefore

qq?CLOL S~ T = ga? {- _57¥EEZEE;; }

and the drag coefficient may be written

@ - JLCI“"[_E%—;)]Z & >}°°2 &)

o= - %e Tf&%ﬁ (sz)} ®2)

For the three wings described, the results may be summarized as
follows:

or
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Wing Aszegt iL& Cp /CI..a |
Tapered wing 3.85 3.09 0.160
Untapered wing 1.73 2.01 .323

Modified untapered

CONCLUDING REMARKS

The calculation of the theoretical load over a swept~back wing
of moderate aspect ratio at a Mach number not too close to ome
appears to be feasible by the method described in this paper. The
total 1i1ft can be approximated within 5 percent for a considerabdbls
range of practical plan forms with only the first step of the
successive approximations outlined. In the cases calculated, the
ma jor effects were obtained with only one graphical integration for
each wing (that for the primary tip effect). The moment is not as
readily approximated; some secondary corrections will generally prove
necessary.

Although in the examples calculated the oblique solutions con-
tributed only about 1 percent to the final 1ift and 2 percent to the
moment, they are expected to prove useful for other cases, particu—
larly for low-aspect-ratio wings of other than rectangular plan form.

At Mach numbers close to 1.0, the method is no longer practical
especially for predicting pressure distributions. It appears that
some other line of approach 1s required for this case,

The results of the calculations emphasize the indications of the
theory that the determining factor in the aerodynamic performance of
wings, as far as differences in plan form are concerned, is the dis—-
position of area relative to the Mach lines. The apparent beneficial
effect of taper and increased aspect ratio, for example, 1s largely
the result of reducing the percentage of area within the Mach cones
from the tip and trailing edge. The negative 11ft calculated for the
tip areas, in particular, may be expected to have a serious effect
on the longitudinal stability variation with Mach number. With the
proper thickness distribution, the wing with cross—stream tips may
provide the solution to this problem.

Ames Aeronautical laboratory,
National Advisory Committee for Aeronautics,
" Moffett Fleld, Calif.
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APPENDIX A
Summary of Symbols

cartesian coordinates in the stream direction, across the
stream, and in the vertical direction, respectively

free—stream velocity

perturbation ve-iocities in the stream direction, across the
stream, and in the vertical direction, respectively

free—gtream Mach number

Vi1

density of air
dynamic pressure (%-pﬁ)

pressure difference between upper and lower surfaces, or
local 1ift )

root chord

semispan

wing ares

angle of attack, radlans

angle of sweep of the leading edge

slope of leading edge
slope of Mach lines

slope of tralling edge
slope of Mach lines

slope of any ray through origin _ By
slope of Mach lines T x
Also used to designate a ray through the origin or a
constant—load element having such a ray as one side, the
other side being a boundary of the wing surface. Used

as a subscript to designate any quantity pertaining to
such an element.

=B cot A
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ag value of a corresponding to most rearward element affecting
a speclified point x,y. On i ag = —Ps
+C X
On trailing edge, ap = mg EZ--—9---——-
By+comt—x
a slope of ray through trailing-edge tip _ - Bs
t slope of Mach lines ‘.co+Bs/mt

Xg5,Ys  coordinates of apex of any constant—load element a
Xp,¥p coordinates of apex of elements used In secondary corrections

x*,y* coordinates of the point at which the Mach line from the tip
crosses the tralling edge

tg slope of ray through apex of element a =B I for any
slope of Mach line. X—Xg
point =x,y
£ slope of ray through xy,yp _ B A
slope of Mach lines ‘ X—Xp
% slope of ray through trailling-edge apex =8 y
© glope of Mach lines X~Co
}
& slope of ray from leading-edge tip 8 y—s
m slope of Mach line T - %?
% glope of ray through x*,y* . y-y¥
glope of Mach lines X—X*
UA bagic perturbation velocity as given by solution for
triangular wing ‘
uy value of ua for wing with supersonic leading edge,
when a 2 1
Up value of ua for wing with subsonic leading edge when
a=0 (center line of wing)
Ug, incremental velocity on any constant-load element a
Lu correction to the basic incremsntal velocity at any point

Qﬂu)a correction to the basic incremental velocity induced by a
single element a
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Hu*

|l

=l

gla)

h(a)

Decrement in velocity u 1induced at x¥,y* by cancellation
of pressures at the tip

basi¢ 1lift for entire wing

basic moment

'correction to total 11ft due to application of one constant—

load element
correction to the basic 1lift s
complex velocity potential functlon
real part of &
imaginary part of ¢

complex velocity function of which wu 1s the real part

imaginary part of U

= ytiz , argument for solutions of the superasonic

xH/x2—p2y2_pz2

flow equation

= 2B
1+p2%¢2
a+a? a
V mt +mt 2
. 1 a+a®
=1 1
( +mt )S() 2 (1+mg) (my~a) \my+my2

_a(l+mt)

h thans

elliptic integral of the second kind

elliptic integral of the first kind

complete elliptic integral of the first kind
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APPENDIX B

In‘hegrationifor Lose of Lift at the Tip
of the Highly Swept Wing

From equations (42), (44), and (10)

AL hm2rPs® [ gr(n

. d Al
©  B(imR) ks ymmar (k)
where '
_ a—at, ay Dy-ay 2
& @) = e | ®ramr) (VEEk-2)
- a-at
2w g2 Varer (a2)

The terms in G'(a) are of two types; namely, those that
contain \/ata® and those that do not. The former combine with the
radical {mr®—e2 1n (Al), to form elliptic integrals of the first,
second, and thlrd kinds. The latter give rise to terms in
equation (Al) which are immediately integrable by elementary means.
It is convenient, therefore, to consider the integral in two parts,

writing
m e
—f G'@) 4g -1, + In
Jay Vf_z_—j&

where I; 1s that part of the integral not requiring elliptic
integrals.

Then
_r= a—ay <at ﬁ;—__a_t) da
I, = et
1. L at®ma (m—a) \ a * nea /et
. 1 (mt—at)2 mta - Mtat VB—atE ]
at2my, (my2-nR ) [\/mte_mz 7 Ragan) | mEet® | (3)
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The remaining terms, involving a+e? and /m2-a2, are inte—
grated by means of the substitution®

e (2

80 that

m-a k = ’i:ﬂ
m(a+l) 2
_ 1

m cn®u

da =—ﬁdu
" 14m sn2u Jnﬁha? ;a+a2 m

The terms involving 1 require in addition the following func-—

sn u =

> (A4)

mt—a
tions and parameters:
K
n = %g__) and a = tn—t (\/% > k') (A5)

In the final formula for Iz, glven below, the elliptic
functions have been re-expressed, as far as possible, in terms of
the original parameters, in order to simplify the computing pro-
cedure. The result is

“The symbols u and a used throughout the remainder of this
appendix are the standard notation for elliptic functions and
are not to be confused with the aerodynamic symbols of the text.
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/F mt—et m-ay &g %(Ht)] F (0,K)

m'l: f'—'"_"'emt @ "’m't-_ \ mi+l m
2ay my—-at _ It-at / m2-at2
+ — l:(l+-———-mt )E(q>,k)+ <&t - ) Bay (g +1) ]

_ (m) @m—ey)® m't n |

@)= { " me (l+mt7} s (,59)

)
2$t(_l_;m) He(n,k ?) }) (a6)
where
¢ = sin L
m(a.t+l)

nn fu (at) ‘du -
8- o 1+n sn2u

1s Iegendre's form of the elliptic integral of the third kind.

In the present problem the integral

fu (at) du
o (L+n sn?u)?

also arises. Differentiation of [ls with respect to the
parameter n gives

_ag_a__f‘(%’ sn2u du
o]

on (1+n sn?u)2

u (a
=.l.f‘"”°’ T G gy
n Jo (1+n sn2u)2 n Jo l4n sn2u

which may then be solved for

(at) a1
d = .5_3
[ 1+ :nau)z = Ha+n n
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This relation is the source of the term in Ill3/dn in equation -(A6).
While II; and its derivative are not tabulated, they can be eval-
uated for individual cases by the following method:

We first note that n>o. The procedure to evaluate I
required in that case has been outlined in some detail as case IV -
in reference 13. The following is an adaptation of that proced.ure
to make use of available tabulated functions. The parameter a
(equation (A5)) is introduced. Then, if wuy 1s the value of u

vhen a = ay,

I, (0,k,9) = ug {1 , en(a,k"Jon (@, k') [12 (1a) + El; \p]} (a7)

“ dn{a,k')
with
1% (1) = 2% + E (a,k*) —a B k*')en (o, k!
2KK* K! cn (o, k)
and

W - o124 Sinlapuy sinh 2apa — 29 *ginbanut sinhh apa+...

1-2q cos2aput cosh 2apa + 2q* cosbapuy cosh hapo—...

The elliptic functions sn(x,k'), cn(oc,k'), dn(x,k') can be computed

from the value of tn(x,k') (equation (A5)), while uy 1s simply

F(9,kX). In Z(ia), K,X' and E,E' are the complete elliptic

integrals of z'uoduli k and k', respectively. In V¥, q is the
—1K

quantity e K s and ap 1s the asymptotic value of the sequence

defined by the recurrence formulae ap = & (ap—y + bp-,) and

bn = Van, bpy with ap =1 ‘and by = k'. (See reference 13.)

The derivative of IIy with respect to n is éréé_ag, which
may be obtained for this case (n > o) in the form n/da

3y snldtlonladt) [ [erflodt) _ oo w@en| | [rexn

on 2n dn(a,k') Ldn2 (a, k')

+Za-a ] u + \1!} sn(a&i&fg.{“’k'; {[l f,@?(q,k')] u

__E(amu’k)__nsnucnudnu}
l+nsnu

’
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. Substitution of the limits and the expressions in equation (Ak),
glves

Mg, P,k) _ snla,k en (a,k') cr® (a,k') "o
o " ondn (a,k') [dmE (z,k') — on® (o, k') J { [E(“"k')

+%a-—a] F(9,k) +\1’}‘

3 sn (a,k*)en (a,k')

{ [1 + dn? (a,,k')] F(@,k)

dn (o, k')
2 2 A
_E(9,k) - m+1 at @"—a+=) }
m~at, 2m (ay+1)

REFERENCES

i. von Ka'rmafn, Theodore : Sﬁpersonic Aerodynamics - Principles and
Applications. Jour. Aero. Sci.,vol. 14, no. 7, July 194T7.

2. ZEvvard, John C.: Distribution of Wave Drag and Lift in {;he
Vicinity of Wing Tips at Supersonic Speeds. NACA TN No. 1382,
1947,

3. Heaslet, Max. A., Lomax, Harvard, and Jones, Arthur L.:
Volterra'ts Solution of the Wave Equation as Applied to Three—
Dimensional Supersonic Airfoil Problems. NACA TN No. 1412, .1947.

4, Busemann, Adolf: Infinitesimal Conical Supersonic Flow.
NACA TM No. 1100, 1947.

5. Puckett, Allen E.: Supersonic Wave Drag of Thin Alrfoils.
Jour. Aero. Sci., vol. 13, no. 9, Sept. 1946, pp. 475484,

6. Stewart, H. J.: The Lift of a Delta Wing at Supersonic Speeds.
Quart. of Applied Math., vol. IV, no. 3, Oct. 1946,
Pp. 246-254, '

7. Heaslet, Max. A., and Lomax, Harvard: The Use of Source-Sink
and Doublet Distributions Extended to the Solution of
Arbitrary Boundary Value Problems in Supersonic Flow.

NACA TN No. 1515, 1947,



NACA TN No. 1555 55

8. legendre, Adrien Marie: Tables of the Complete and Incomplete
Elliptic Integrals. Biometriks Office, University College,
Cambridge University Press, Cambridge; Eng. 193k.

e
3

9. Dwight, Herbert Bristol: Tables of Integrals and Other Mathe—
matical Data. . The Macmillan Company, New York, 1934, p. 155.

10. Hayes, Wallace D., Browns, S. H., and Lew, R. J.: Linesarized
Theory of Conical Supersonic Flow with Application to
Trianguler Wings. North American Report NA-46-818.,

Sept. 30, 1946, - '

11. Jonea, Robert T.: Properties of Low-Aspect—Ratio Pointed Wings at
Speeds Bel’qw and Above the Speed of Sound. NACA TN No. 1032, 1946,

12, Jones, Robert T.: Estimated Lift-Drag Ratios at Supersonic Speed.
NACA TN No. 1350, 1947.

13. King, Louis V.: "On the Direct Numerical Calculation of Elliptic
Functions and Integrals. Cambridge University Press, 1Rk,



NACA TN No, 1555

56

T cto 7%0° eeaBep aed ‘mp/TI00
. T10°2 60°€ gob/7 = 00/Toe |
0°001 19°9TT 0°001 Ly*og STBI0L
T+ 4T+ | €00°+ 200°+ uot3 80D drg 3%
T oL T+ ero°+ TO*+ (£) AR UOT306II00 PUOOSS
Coot . =0 . -e8pe BuiTieIl 318
te 99*e+ | ceo+ 20+ (TL) WORI®MDE | o soxion puooes

T T A o g~ G- C suoTqenb exBM Ut
k ? 0 (8¢) vwe .C.nv FEd squemeTs enbiTao

9*ET— 06°¢T- | 6°2— 2tz (66) voTyEmby Torasies
eXBM TBOTIqaumisg
1°6T- of*2e- 91— 2€°T—| (44) vue (&+) suopyenbyg q087Fe dig,
0°0£T | 33 bs gG*1CT T°60T 3J bs g¢°#g | (2T) vue (11) suoljenbg UOTGNTOS OTeBY

53103 % b/ 19303 ¢ b/
TuiA pexedeaun ~—Suin porednl 8uT38INOTEO JO POIEN 3JIT JO eo.amog’

JATT RLVIO)IVO — I FIdVL




37

NACA TN No. 1555

POTITRON

Futa peredeiun

P
. . . BOIE JO WIV JUGWON
0°1 €80 80°1 TITT 30 e JUSDH
0°00T #°999— | 0°00T Lecgl- 0°00T 6° LG 8T830%
. . - —— drq 9%
¢ 0 TeE+ yote- TOFR08II00 PUODEY
. cof— —— _ _ _ | oBpe BugTyeay 3®
0 Q TG+ tegt UOTF061100 PUODES
- - ——— . . o . - exem Uj
e 0°9T+ £0°T Lew+ squemeTe eNBETA0.
06 neger | gree- g6LT+ | e 16T | oqun tempanommis
o Y 0°LE- g*6le+ | b2 G ET+ 100336 dIL
0°G0T [|3F no g°ToL— | L°HGT |33 1m0 0°69TT— | 22°Q0T |33 MO G°Cor orssyg
T®303 ¢ b/ T®30% ¢ ob/K T®30% ¢ b/
fuia peaedsiun Sura poaedsy

quemon JO 69JMNog

INAWOW ONTHOLId dELVINOTYD — IT TIEViL




Fig. 1

NACA TN No, 1555

ouil yoop

'S8UJ| YODW 8Y} 0 9A1jD]o4 doams J0o Sad41b8p
SNOIIDA Yiim sOUim uo suorbed moly |DI1U0Y — | 84nBl

'$96pa Buipoa) 21U0SGNS Y{IM sbuIM

9inssousd
JUDJSU09

J0 uosbay 77

suyy (o)

0



NACA TN No. 1555

>ty
\
>x0:
Mach line
(a /)
o Py //
\0/\\(\9'
A0 /N0
¢ \3‘0
On-,’
77~1°'C
X <
Y 1 ‘ uy —
Basic velocity disfribufia'ﬁ%)/___
u |
A B
o - l
A a m

o

Figure 2.~ Detail of tip of low aspacf ratio wing mM
supersonic leading edge, showing axes and
symbols used in formulas, and basic velocity distribution.
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Figure 3— Elementary solution for tip.
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Figure 4.= Percent dropoff in lift along Mach line from tip.
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(equation 50)
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Figure 5~ Detall of trailing edge of highly swept vov/ng showing
obligque constant- lift element and induced velocity
distribution.
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Leading edge

Figure 6.~ Pegions of tip and trailing edge interaction.
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? Mach line
from. trailing
edge apex

Figure 7.— Second step of successive approximalions. Correction
for pressures at tlp induced by frailing-edge solution.
Shaded area denoles extraneous pressure field.
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Figure 8— Approximate cancellation of extraneous pressures
behind trailing edge by sing/a cam‘ca/ field fram fhc
leading edge tip.. ,
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Figure 9.— Wing with "cross-stream tips®, showing ray a,
through the inboard end of the tip.
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Figure 10.— Reverse delfa wing.
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Figure Il— Tapered wing used in calculations showing
primary and secondary Mach lines at M=1.5.
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e 10’

Figure 12— Untapered wing for which pressure distribution
was calculated, showing primary and secondary
Mach lines at M=15.
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Figure 13~ Incremental velocity distribution due to
removal of constant-/ift symmeflrical sector
in wake (shown positive).
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Figure 16— Spanwise distribution of incremental
velocity at various chordwise stations
within the Mach cone from the tip of the
untapered wing.
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Figure I7— Chordwise pressure distributions calculated
for the unfapered wing.
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Figure I7.— (continued)
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8 I. Contribution of symmetrical
wake correction
2. Contribution of oblique
elements in wake
7 3. Contribution of first tip
correction
4. Correction for (3) at the
6 frailing edge
8. Correction for (l) and (2)
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Basic pressure

4

27

24/
/ %/ ﬁﬁ:s”s’Z",Z’ »

7 3
0 -Z%.(“ o /////////17

77

4
-/ ¥ 5
21 T NACA
L : : :
0 25 50 75 /100
y Percent chord
(d) =975

Figure 17— (concluded)
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